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Abstract

Continuously symmetric solutions of the Adler–Bobenko–Suris class of
discrete integrable equations are presented. Initially defined by their invariance
under the action of both of the extended three-point generalized symmetries
admitted by the corresponding equations, these solutions are shown to be
determined by an integrable system of partial differential equations. The
connection of this system to the Nijhoff–Hone–Joshi ‘generating partial
differential equations’ is established and an auto-Bäcklund transformation and
a Lax pair for it are constructed. Applied to the H1 and Q1δ=0 members
of the Adler–Bobenko–Suris family, the method of continuously symmetric
reductions yields explicit solutions determined by the Painlevé trancendents.

PACS numbers: 02.20.Sv, 02.30.Ik
Mathematics Subject Classification: 39A05, 70G65

1. Introduction

The study of integrable discrete systems has a long history going back to work in the late
1970s and early 1980s [1–4]. At this point, it is acknowledged that most of the well-known
integrable discrete systems are characterized by their ‘multidimensional consistency’. This
means that such a system may be imposed in a consistent way in a multidimensional space. This
property seems to incorporate automatically two integrability aspects of this kind of systems,
in the following sense: multidimensional consistency allows one to derive algorithmically a
Bäcklund transformation as well as a Lax pair for the difference equations under consideration
[5–7].

Recently, Adler, Bobenko and Suris (ABS) classified the scalar lattice equations which are
multidimensionally consistent and possess the symmetries of the square and the tetrahedron
property, as well [8]. Subsequently, they classified the lattice equations having the consistency
property in a more general framework [9].
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The equations covered by the ABS classification [8] have already attracted the interest
of many investigators and several results pertaining to them have already been published,
including exact solutions [10, 11], Bäcklund transformations [12], symmetries [13–16] and
conservation laws [17].

In this paper, we focus on the symmetry properties of the ABS equations and show
how a particular class of reductions provide a natural interplay between them and certain
non-autonomous systems of partial differential equations. The means to explore this link is
provided by the pair of extended three-point generalized symmetries admitted by the equations
of the ABS class [13].

More specifically, we study the continuously invariant solutions of the systems under
consideration. We use the term ‘continuously invariant solutions’ for the solutions that remain
invariant under the action of both of the extended three-point generalized symmetries admitted
by the corresponding equation. We show that these solutions are determined by a system
of differential–difference equations, which involves six values of the unknown function, u.
The elimination of three of these values leads to an equivalent system of partial differential
equations, �[u], which involves the remaining values of the dependent variable.

Among the other advantages offered by the general framework of the continuously
invariant solutions developed in this paper is the fact that it allows us to derive easily some of
the integrability properties of �[u]. In particular, it enables us to construct an auto-Bäcklund
transformation for this system as well as a Lax pair.

The implementation of this general framework to the equations H1 and Q1δ=0 of the ABS
family leads to explicit solutions, constructed using symmetry reductions of the corresponding
�[u] systems. These solutions are determined by quadratures from the continuous Painlevé
V and VI equations, but may also be regarded as resulting from reductions which lead to
discrete Painlevé equations [13, 18]. In this fashion, a new connection between discrete and
continuous versions of the Painlevé equations is revealed.

Another important aspect of system �[u] is that it leads to what has been termed as
generating partial differential equations. The archetypical example of such equations is the
regular partial differential equation (RPDE), introduced by Nijhoff, Hone and Joshi in [19].
These authors showed that the RPDE, which encodes the entire hierarchy of the Korteweg -
de Vries (KdV) equation, is related to equation H1 of the ABS family. In the present paper
the above result is rederived, but by a completely different method, which also allows its
immediate generalization. Specifically, we show that not only H1, but also H2, H3 and Q1 are
related to the RPDE, and establish this relation in a systematic fashion, using the properties of
the corresponding �[u].

The present paper is organized as follows. In section 2, we first introduce the notation
used in the sections that follow. Then, we present the main characteristics of a wider class of
lattice equations containing all the members of the ABS family, along with an auto-Bäcklund
transformation, Bd , for each member of the latter.

Section 3 deals with the solutions of the equations of the ABS family which remain
invariant under the action of the two extended three-point generalized symmetries admitted
by the above equations. These solutions are determined by a system of differential–difference
equations which we prove to be equivalent to the integrable system �[u]. In the same section,
we prove that the class of continuously invariant solutions is closed under the Bäcklund
transformation Bd . Exploiting this result, we derive two items revealing the integrability of
system �[u] itself, namely an auto-Bäcklund transformation and a Lax pair.

Sections 4 and 5 contain the application of the general results of section 3 to the ABS
equations H1 and Q1δ=0. Specifically, we construct symmetry reductions of the corresponding
�[u] systems, in terms of which explicit solutions of the above equations are determined.
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Figure 1. An elementary quadrilateral.

Section 6 deals with generating partial differential equations and the detailed analysis
of system �[u] corresponding to equations H1–H3 and Q1 is presented. In particular, we
show that systems �[u] for H1, H2 and Q1 are related, through a contact transformation, to
the RPDE. Also, we derive the connection of �[u] for H3 to the RPDE. Finally, we relate
our results to those of [19], where the connection of H1, H3δ=0 and Q1δ=0 to the RPDE was
presented from a different point of view.

The concluding section contains an overall evaluation of the presented results and various
perspectives.

2. Notation and the Adler–Bobenko–Suris equations

We first introduce the notation that will be used in what follows. In addition, we present those
properties of the ABS equations that will be used in the following sections.

A partial difference equation is a functional relation among the values of a function
u : Z × Z → C at various points of the lattice, which may also involve the independent
variables n,m and the lattice spacings α, β (see figure 1) i.e. a relation of the form

E (n,m, u(0,0), u(1,0), u(0,1), . . . ;α, β) = 0. (1)

In this relation, u(i,j) denotes the value of the function u at the lattice point (n + i, m + j), e.g.

u(0,0) = u(n,m), u(1,0) = u(n + 1,m), u(0,1) = u(n,m + 1),

and this is the notation that will be used for the values of the function u from now on.
The analysis of such equations is facilitated by the introduction of two translation operators

acting on functions on Z
2, defined by(

S (k)
n u

)
(0,0)

= u(k,0),
(
S (k)

m u
)
(0,0)

= u(0,k), where k ∈ Z,

respectively.
The equations of the ABS family belong to a wider class which contains all the equations

of the form

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0, (2)

where the function Q satisfies the following requirements.

(1) It does not depend explicitly on the discrete variables n,m.
(2) It is affine linear and depends explicitly on the four values of the unknown function u, i.e.

∂u(i,j)
Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) �= 0

3
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Figure 2. The elementary quadrilateral and the polynomials.

and

∂2
u(i,j)

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0,

where i, j = 0, 1.
(3) It possesses the symmetries of the square (D4-symmetry):

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = εQ(u(0,0), u(0,1), u(1,0), u(1,1);β, α)

= σQ(u(1,0), u(0,0), u(1,1), u(0,1);α, β),

where ε = ±1 and σ = ±1.

The affine linearity of Q implies that one can define six different polynomials in terms of
the function Q [8, 9, 13], four of them assigned to the edges and the rest to the diagonals of
the elementary quadrilateral where the equation is defined (see figure 2).

A polynomial hij assigned to an edge or a diagonal depends on the values of u assigned
to the end points of the corresponding edge or diagonal, respectively, as illustrated in figure 2,
and is defined by

hij = hji := QQ,ij − Q,iQ,j , i �= j, i, j = 1, . . . , 4,

where Q,i denotes the derivative of Q with respect to its ith argument and Q,ij the second-order
derivative Q with respect to its ith and j th arguments. The polynomials hij are quadratic in
each one of their arguments. Moreover, the relations

h12h34 = h13h24 = h14h23 (3)

hold in view of the condition Q = 0.
On the other hand, the symmetries of the square imply the following.

(1) The polynomials on the edges have to be of the form

hij =
{

h(x, y;α, β), |i − j | = 1

h(x, y;β, α), |i − j | = 2,
i �= j, {i, j} �= {2, 3}, (4)

where h is quadratic and symmetric in its first two arguments.
(2) The two diagonal polynomials are identical and

h14 = h23 = G(x, y;α, β), (5)

where G is quadratic, symmetric in its first two arguments and symmetric in the parameters.
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2.1. The Adler–Bobenko–Suris equations

In order to make our presentation self-contained, we first list all the members of the ABS
classification and the notation that we will use in the following sections:

H1 (u(0,0) − u(1,1))(u(1,0) − u(0,1)) − α + β = 0 (6)

H2 (u(0,0) − u(1,1))(u(1,0) − u(0,1)) + (β − α)(u(0,0) + u(1,0) + u(0,1) + u(1,1))

−α2 + β2 = 0 (7)

H3 α(u(0,0)u(1,0) + u(0,1)u(1,1)) − β(u(0,0)u(0,1) + u(1,0)u(1,1)) + δ(α2 − β2) = 0 (8)

Q1 α(u(0,0) − u(0,1))(u(1,0) − u(1,1)) − β(u(0,0) − u(1,0))(u(0,1) − u(1,1))

+ δ2αβ(α − β) = 0 (9)

Q2 α(u(0,0) − u(0,1))(u(1,0) − u(1,1)) − β(u(0,0) − u(1,0))(u(0,1) − u(1,1)) + αβ(α − β)

× (u(0,0) + u(1,0) + u(0,1) + u(1,1)) − αβ(α − β)(α2 − αβ + β2) = 0 (10)

Q3 (β2 − α2)(u(0,0)u(1,1) + u(1,0)u(0,1)) + β(α2 − 1)(u(0,0)u(1,0) + u(0,1)u(1,1))

−α(β2 − 1)(u(0,0)u(0,1) + u(1,0)u(1,1))

− δ2(α2 − β2)(α2 − 1)(β2 − 1)

4αβ
= 0 (11)

Q4 a0u(0,0)u(1,0)u(0,1)u(1,1) + a1(u(0,0)u(1,0)u(0,1) + u(1,0)u(0,1)u(1,1) + u(0,1)u(1,1)u(0,0)

+ u(1,1)u(0,0)u(1,0)) + α2(u(0,0)u(1,1) + u(1,0)u(0,1))

+ ā2(u(0,0)u(1,0) + u(0,1)u(1,1)) + ã2(u(0,0)u(0,1) + u(1,0)u(1,1))

+ a3(u(0,0) + u(1,0) + u(0,1) + u(1,1)) + a4 = 0. (12)

The ai’s appearing in the last equation are determined by the relations

a0 = a + b, a1 = −aβ − bα, a2 = aβ2 + bα2,

ā2 = ab(a + b)

2(α − β)
+ aβ2 −

(
2α2 − g2

4

)
b, ã2 = ab(a + b)

2(β − α)
+ bα2 −

(
2β2 − g2

4

)
a,

a3 = g3

2
a0 − g2

4
a1, a4 = g2

2

16
a0 − g3a1,

where

a2 = p(α), b2 = p(β), p(x) = 4x3 − g2x − g3.

The main characteristic of all of the above equations is their integrability, which is
understood as they being multidimensionally consistent. From this property, it follows
that [8]

(i) The polynomial related to the edges, h, can be written as

h(x, y;α, β) = k(α, β)f (x, y, α),

where the function k(α, β) is antisymmetric, i.e.

k(β, α) = −k(α, β).

(ii) The discriminant

d := f 2
,y − 2ff,yy

is independent of the parameters α, β.

5



J. Phys. A: Math. Theor. 42 (2009) 165203 D Tsoubelis and P Xenitidis

(iii) The functions f,G and k determining the polynomials hij can be specified explicitly and,
for convenience, are given in appendix A.

To the above properties of the ABS equations, one can add the following two [7], which
will also be used in the symmetry analysis to be presented in the following sections.

(iv) They define their own auto-Bäcklund transformation. The latter is specified by the
following relations:

Bd(u, ũ, λ) :=
{

Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) = 0

Q(u(0,0), u(0,1), ũ(0,0), ũ(0,1);β, λ) = 0.
(13)

(v) If {u0, u1, u2, u12} is a quartet of solutions related by the Bäcklund transformation Bd ,
then their superposition (Bianchi diagram) is expressed by the condition

Q(u0, u1, u2, u12; λ1, λ2) = 0.

3. Symmetry reductions

In this section, we present the general framework of particular symmetry reductions of the ABS
equations. More specifically, we study solutions of these equations which remain invariant
under the action of both of the extended three-point generalized symmetry generators, under
the assumption that the unknown function depends continuously on the lattice parameters α, β.

We first show that invariant solutions of the above kind are determined by a system
of differential–difference equations. The latter turns out to be equivalent to an integrable
system of partial differential equations, �[u]. The integrability of �[u] is established by the
construction of its auto-Bäcklund transformation, Bc. This transformation provides the means
for deriving a Lax pair for system �[u], as well. These integrability aspects are the subject of
the second part of this section.

3.1. Continuous symmetry reductions and system �[u]: general considerations

Let us recall that [13] equation of the ABS family

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0 (14)

admits a pair of three-point generalized symmetries generated, respectively, by the vector
fields

vn = R(u(0,0), u(1,0), u(−1,0), α)∂u(0,0)
, (15i)

vm = R(u(0,0), u(0,1), u(0,−1), β)∂u(0,0)
. (15ii)

It also admits a pair of extended generalized symmetries with respective generators of the
vector fields:

v1 = A(n)R(u(0,0), u(1,0), u(−1,0), α)∂u(0,0)
+ (A(n) − A(n + 1))r(α)∂α, (16i)

v2 = B(m)R(u(0,0), u(0,1), u(0,−1), β)∂u(0,0)
+ (B(m) − B(m + 1))r(β)∂β, (16ii)

where

R(u, x, y, κ) := f (u, x, κ)

x − y
− 1

2
f,x(u, x, κ) = f (u, y, κ)

x − y
+

1

2
f,y(u, y, κ), (17)

A(n), B(m) are arbitrary non-constant functions of their arguments, and r(x) depends on the
particular equation under consideration, as specified in the following table:

6
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Equation H1 H2 H3 Q1 Q2 Q3 Q4

r(x) 1 1 − x
2 1 1 − x

2 − 1
2 (4x3 − g2x − g3)

1/2

The solutions of (14) that remain invariant under the action of both of the symmetry
generators v1 and v2 must satisfy the invariant surface conditions

∂u(0,0)

∂α
= K(n, α)R(u(0,0), u(1,0), u(−1,0), α), (18i)

∂u(0,0)

∂β
= L(m, β)R(u(0,0), u(0,1), u(0,−1), β), (18ii)

where

K(n, α) := A(n)

A(n) − A(n + 1)

1

r(α)
,

L(m, β) := B(m)

B(m) − B(m + 1)

1

r(β)
.

(19)

The compatibility of equations (14) and (18) is expressed by the conditions

Dα(Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β)) = 0, (20i)

Dβ(Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β)) = 0, (20ii)

∂β(∂αu(0,0)) = ∂α(∂βu(0,0)), (20iii)

where Dα and Dβ denote the total derivative operators with respect to α and β, respectively,
i.e.

Dα := ∂α +
1∑

i,j=0

∂u(i,j)

∂α
∂u(i,j)

, Dβ := ∂β +
1∑

i,j=0

∂u(i,j)

∂β
∂u(i,j)

.

Written out explicitly, by using the expressions for Q,α and Q,β following from the
determining equations for the symmetry generators v1 and v2, respectively, conditions (20i)
and (20ii) imply that A(n) and B(m) must be affine linear. Without loss of generality, we
choose them to read as follows:

A(n) = n, B(m) = m.

Condition (20iii), on the other hand, imposes no further restrictions, because it holds
identically. This follows from the fact that the commutator of the two symmetry generators
vn, vm produces a trivial generalized symmetry [7].

Thus, the solutions of the ABS equations which are invariant under the action of both v1

and v2 are determined by the differential–difference system

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0, (21i)

r(α)
∂u(0,0)

∂α
+ nR(u(0,0), u(1,0), u(−1,0), α) = 0, (21ii)

r(β)
∂u(0,0)

∂β
+ mR(u(0,0), u(0,1), u(0,−1), β) = 0. (21iii)

These solutions will be referred to as continuously invariant solutions.
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System (21) involves the values of the unknown function u at six different points of
the lattice. One could eliminate any three of these values and get an equivalent system of
partial differential equations involving the remaining ones. We choose to eliminate the values
u(−1,0), u(0,−1) and u(1,1), and this leads to the following result.

Proposition 3.1. Every continuous invariant solution is determined by the system of partial
differential equations

∂u(1,0)

∂β
= G(u(1,0), u(0,1))

k(α, β)f (u(0,0), u(0,1), β)

∂u(0,0)

∂β
+

mf (u(0,0), u(0,1), β)

2r(β)k(α, β)
∂u(0,1)

(
G(u(1,0), u(0,1))

f (u(0,0), u(0,1), β)

)
,

∂u(0,1)

∂α
= G(u(1,0), u(0,1))

k(β, α)f (u(0,0), u(1,0), α)

∂u(0,0)

∂α
+

nf (u(0,0), u(1,0), α)

2r(α)k(β, α)
∂u(1,0)

(
G(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)

)
,

∂2u(0,0)

∂α∂β
= A1

∂u(0,0)

∂α

∂u(0,0)

∂β
+

f (u(0,0), u(1,0), α)

2k(α, β)

(
m

r(β)
A2

∂u(0,0)

∂α
+

n

r(α)
A3

∂u(0,0)

∂β

)

+
nmf (u(0,0), u(1,0), α)

4r(α)r(β)k(α, β)
A4,

where

A1 =
(

f,u(0,0)
(u(0,0), u(1,0), α)

f (u(0,0), u(1,0), α)
− f (u(0,0), u(1,0), α)

k(α, β)f (u(0,0), u(0,1), β)
∂u(1,0)

(
G(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)

))
,

A2 = ∂u(1,0)

(
f,u(0,1)

(u(0,0), u(0,1), β)

f (u(0,0), u(0,1), β)

G(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)
− G,u(0,1)

(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)

)
,

A3 = k(α, β)∂u(1,0)
(ln f (u(0,0), u(1,0), α)) − f (u(0,0), u(1,0), α)

f (u(0,0), u(0,1), β)
∂u(1,0)

(
G,u(1,0)

(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)

)

+
G(u(1,0), u(0,1))

f (u(0,0), u(0,1), β)
∂2
u(1,0)

(ln f (u(0,0), u(1,0), α))

and

A4 = ∂u(1,0)
∂u(0,1)

(
f,u(1,0)

(u(0,0), u(1,0), α)G(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)
− G,u(1,0)

(u(1,0), u(0,1))

)

+ ∂u(0,1)
(ln f (u(0,0), u(0,1), β))f (u(0,0), u(1,0), α)∂u(1,0)

(
G,u(1,0)

(u(1,0), u(0,1))

f (u(0,0), u(1,0), α)

)
− ∂u(0,1)

(ln f (u(0,0), u(0,1), β))∂2
u(1,0)

(ln f (u(0,0), u(1,0), α))G(u(1,0), u(0,1)).

The above system, which will be denoted by �(u(0,0), u(1,0), u(0,1);α, β; n,m), or, simply �[u],
is symmetric:

�(u(0,0), u(0,1), u(1,0);β, α;m, n) = �(u(0,0), u(1,0), u(0,1);α, β; n,m).

Proof. The first equation of system �[u] results by eliminating the values u(0,−1) and u(1,−1)

from equation (21iii) and

Q(u(0,−1), u(1,−1), u(0,0), u(1,0);α, β) = 0.

Using the affine linearity and the symmetries of Q, the last equation can be written as

u(1,−1) = − Q,u(0,1)
u(0,−1) + Q

Q,u(0,1)u(1,1)
u(0,−1) + Q,u(1,1)

, (22)

where the arguments of Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) have been omitted and Q and its
derivatives are understood to be evaluated at u(0,1) = u(1,1) = 0.
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We now solve (21iii) and its shift in the n direction with respect to u(0,−1) and u(1,−1),
respectively, and substitute the results into equation (22). The resulting equation, combined
with the relations

Q2
,u(1,1)

= f (u(0,0), u(1,0), α)G(u(1,0), u(0,1))

f (u(1,0), u(1,1), β)
,

∂u(0,1)
Q2

,u(1,1)
= k(α, β)f (u(0,0), u(1,0), α)

(
G,u(0,1)

(u(1,0), u(0,1)) − f,u(1,1)
(u(1,0), u(1,1), β)

)
f (u(1,0), u(1,1), β)

,

which hold in view of Q = 0, yields the first member of �[u].
The second equation of �[u] results in a similar manner. It is also easily verified that

the first two equations of �[u] are symmetric, i.e. the one is mapped to the other under
interchanges

u(1,0) ←→ u(0,1), α ←→ β, n ←→ m. (23)

In order to obtain the third member of �[u], one first solves the second equation of �[u]
and its shift in the n direction for ∂βu(1,0) and ∂βu(−1,0). One then substitutes the result into
the derivative of equation (21ii) with respect to β. From the resulting equation, one arrives at
the third member of �[u] by using the expressions for u(1,0) − u(−1,0), G(u(−1,0), u(0,1)) and
its derivatives provided by equation (21ii) and the relation1

G,u(1,0)
(u(1,0), u(0,1)) + G,u(−1,0)

(u(−1,0), u(0,1)) = 2
G(u(1,0), u(0,1)) − G(u(−1,0), u(0,1))

u(1,0) − u(−1,0)

,

and its differential consequences, respectively.
Finally, differentiating equation (21iii) with respect to α and following an analogous

procedure, one arrives at an expression which is identical to the third member of �[u] under
the mapping (23). �

As already noted, one may choose to eliminate any other triad of the values of u involved
in equations (21). In this fashion, compatible systems of partial differential equations
can be constructed involving the triplets (u(0,0), u(−1,0), u(0,1)), (u(0,0), u(1,0), u(0,−1)) and
(u(0,0), u(−1,0), u(0,−1)), respectively. It turns out that the corresponding systems are given
by

�(u(0,0), u(−1,0), u(0,1);α, β;−n,m), �(u(0,0), u(1,0), u(0,−1);α, β; n,−m)

and

�(u(0,0), u(−1,0), u(0,−1);α, β;−n,−m),

respectively.
System �(u(0,0), u(1,0), u(0,1);α, β; n,m) and the last three are compatible, in the

following sense (cf Figure 3). If we eliminate ∂βu(1,0) (respectively ∂βu(−1,0)) from systems
�(n,m) and �(n,−m) (respectively �(−n,m) and �(−n,−m)), then we will end up
with (21iii). On the other hand, the elimination of ∂αu(0,1) and ∂αu(0,−1) from systems
�(n,m),�(−n,m) and �(n,−m),�(−n,−m), respectively, leads to (21ii). Finally, the
elimination of ∂α∂βu(0,0) from any two of the four �[u]’s mentioned above results in (21i).

1 This relation holds identically, i.e. without taking into account the equation Q = 0; thus, we can differentiate it
assuming that the corresponding values of u are independent.
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u(0,0)
u(1,0)u(−1,0)

u(0,1)

u(0,−1)

Σ(n, m)

Σ(n, −m)

Σ(−n, m)

Σ(−n, −m)

Figure 3. The values of u and the compatible systems �.

3.2. Integrability of system �[u]

We have already characterized system �[u] as integrable. To support this characterization, in
the present subsection, we construct an auto-Bäcklund transformation and a Lax pair for the
above system.

To this end, let it first be noted that the fact that every equation of the ABS class

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0 (24)

admits generalized symmetries and extended generalized symmetries with generators of the
vector fields given in (15) and (16), respectively, has the following consequences.

(1) The vector fields

ṽn = R(u(0,0), u(1,0), u(−1,0), α)∂u(0,0)
+ R(ũ(0,0), ũ(1,0), ũ(−1,0), α)∂ũ(0,0)

and

ṽ1 = A(n)ṽn + (A(n) − A(n + 1))r(α)∂α

are symmetry generators of the first of the equations making up the auto-Bäcklund
transformation Bd , i.e. of Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) = 0. Therefore, relations

ṽ(1)
n (Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ)) = 0,

ṽ
(1)
1 (Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ)) = 0

hold in view of Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) = 0.
(2) The vector fields

ṽm = R(u(0,0), u(0,1), u(0,−1), β)∂u(0,0)
+ R(ũ(0,0), ũ(0,1), ũ(0,−1), β)∂ũ(0,0)

,

ṽ2 = B(m)vm + (B(m) − B(m + 1))r(β)∂β,

are symmetry generators of the second of the equations of the auto-Bäcklund
transformation. As a result, the pair of relations

ṽ(1)
m (Q(u(0,0), u(0,1), ũ(0,0), ũ(0,1);β, λ)) = 0,

ṽ
(1)
2 (Q(u(0,0), u(0,1), ũ(0,0), ũ(0,1);β, λ)) = 0

hold in view of Q(u(0,0), u(0,1), ũ(0,0), ũ(0,1);β, λ) = 0.

10
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Using the above observations, one may prove the following proposition.

Proposition 3.2. The auto-Bäcklund transformation Bd(u, ũ, λ) maps a continuously invariant
solution u to another solution ũ of the same kind.

Proof. It is given in the appendix B. �

An immediate consequence of the this result is described in the following proposition.

Proposition 3.3. If u is a continuously invariant solution, then the system

Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) = 0, (25i)

Q(u(0,0), u(0,1), ũ(0,0), ũ(0,1);β, λ) = 0, (25ii)

∂ũ(0,0)

∂α
= 1

k(α, λ)

(
−∂u(0,0)

∂α
+

n

2r(α)
f,u(1,0)

(u(0,0), u(1,0), α)

)
G(u(1,0), ũ(0,0), α, λ)

f (u(0,0), u(1,0), α)

− n

2k(α, λ)r(α)
G,u(1,0)

(u(1,0), ũ(0,0), α, λ), (25iii)

∂ũ(0,0)

∂β
= 1

k(β, λ)

(
−∂u(0,0)

∂β
+

m

2r(β)
f,u(0,1)

(u(0,0), u(0,1), β)

)
G(u(0,1), ũ(0,0), β, λ)

f (u(0,0), u(0,1), β)

− m

2k(β, λ)r(β)
G,u(0,1)

(u(0,1), ũ(0,0), β, λ) (25iv)

defines a new solution ũ of the same kind and conversely.
The above system, which will be denoted as Bc(u, ũ, λ), is symmetric

Bc(ũ, u, λ) = Bc(u, ũ, λ),

and defines an auto-Bäcklund transformation of system �[u].

Proof. It is given in appendix C. �

Remark 3.1.

(i) The second pair of equations of system Bc(u, ũ, λ) follows from the first two equations
of �[u], via the substitutions

u(1,0) −→ ũ(0,0), α −→ λ

and

u(0,1) −→ ũ(0,0), β −→ λ,

respectively.
(ii) The superposition principle of Bd(u, ũ, λ) implies the corresponding one for Bc(u, ũ, λ):

Q
(
u0

(0,0), u
1
(0,0), u

2
(0,0), u

12
(0,0); λ1, λ2

) = 0,

Q
(
u0

(1,0), u
1
(1,0), u

2
(1,0), u

12
(1,0); λ1, λ2

) = 0,

Q
(
u0

(0,1), u
1
(0,1), u

2
(0,1), u

12
(0,1); λ1, λ2

) = 0.

Finally, let us consider the following pair of equations:

�,α = 1

k(α, λ)

(
− 1

2A,ũ(0,0)
− 1

2A,ũ(0,0)ũ(0,0)

A 1
2A,ũ(0,0)

)
�, (26i)

�,β = 1

k(β, λ)

(
− 1

2B,ũ(0,0)
− 1

2B,ũ(0,0)ũ(0,0)

B 1
2B,ũ(0,0)

)
�, (26ii)
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where

A :=
(

−∂u(0,0)

∂α
+

n

2r(α)
f,u(1,0)

(u(0,0), u(1,0), α)

)
G(u(1,0), ũ(0,0), α, λ)

f (u(0,0), u(1,0), α)

− n

2r(α)
G,u(1,0)

(u(1,0), ũ(0,0), α, λ), (27i)

B :=
(

−∂u(0,0)

∂β
+

m

2r(β)
f,u(0,1)

(u(0,0), u(0,1), β)

)
G(u(0,1), ũ(0,0), β, λ)

f (u(0,0), u(0,1), β)

− m

2r(β)
G,u(0,1)

(u(0,1), ũ(0,0), β, λ), (27ii)

and A,B and their derivatives are evaluated at ũ(0,0) = 0. Equations (26) constitute a Lax
pair for system �[u]. One arrives at this result, essentially, by the inverse of the procedure
presented by Crampin in [20]. In any case, it can be easily verified directly by considering
each of the ABS equations separately.

4. Continuous-invariant solutions of the discrete potential KdV equation

In the last section, we established the general framework for the special reductions of the ABS
equations leading to what we called continuously invariant solutions. In the present section,
the above results are applied to equation H1. The latter will also be referred to as discrete
potential KdV, in compliance with the terminology adopted in [21] (cf also [2, 3]).

System �[u] corresponding to H1 is made up of the equations

∂u1

∂β
= u1 − u2

α − β

(
m − (u1 − u2)

∂u

∂β

)
, (28i)

∂u2

∂α
= u1 − u2

α − β

(
n + (u1 − u2)

∂u

∂α

)
, (28ii)

∂2u

∂α∂β
= 1

α − β

(
2(u1 − u2)

∂u

∂α

∂u

∂β
+ n

∂u

∂β
− m

∂u

∂α

)
, (28iii)

where

u = u(0,0), u1 = u(1,0), u2 = u(0,1).

Obviously, the nonlinear system (28) is very hard to solve. However, whole families
of solutions can be obtained, in a systematic way, via symmetry analysis. In what follows,
we construct multiparameter families of solutions of the above system, using its Lie point
symmetries.

System (28) admits a five-dimensional group of point symmetries generated by the vector
fields [24]

w1 = ∂α + ∂β, w2 = α∂α + β∂β + u∂u,

w3 = ∂u, w4 = ∂u1 + ∂u2 , w5 = u∂u − u1∂u1 − u2∂u2 .

It will be shown that similarity solutions corresponding to the above group of symmetries are
determined by solutions of the Painlevé V and VI equations [24]. For easy reference, we note
that the latter equations are given by

G′′ =
(

1

2G
+

1

G − 1

)
G′2 − 1

y
G′ + a

G(G − 1)2

y2
+ b

(G − 1)2

y2G
+ c

G

y
+ d

G(G + 1)

G − 1
(29)

12
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and

G′′ = 1

2

(
1

G
+

1

G − 1
+

1

G − y

)
G′2 −

(
1

y
+

1

y − 1
+

1

G − y

)
G′

+
G(G − 1)(G − y)

y2(y − 1)2

(
a + b

y

G2
+ c

y − 1

(G − 1)2
+ d

y(y − 1)

(G − y)2

)
, (30)

which will be denoted by PV(y,G(y); a, b, c, d) and PVI(y,G(y); a, b, c, d), respectively.
For the same reason, we list here the symmetry generators of the discrete potential KdV

equation [13, 15], which will be used extensively in the rest of this section.

• Point symmetries

x1 = ∂u(0,0)
, x2 = (−1)n+m∂u(0,0)

, x3 = (−1)n+mu(0,0)∂u(0,0)
,

x4 = u(0,0)∂u(0,0)
+ 2α∂α + 2β∂β, x5 = ∂α + ∂β.

• Generalized symmetries

v1 = 1

u(1,0) − u(−1,0)

∂u(0,0)
, v2 = nv1 +

u(0,0)

2(α − β)
∂u(0,0)

,

v3 = 1

u(0,1) − u(0,−1)

∂u(0,0)
, v4 = mv3 − u(0,0)

2(α − β)
∂u(0,0)

,

v5 = nv1 − ∂α, v6 = mv3 − ∂β.

4.1. Solutions related to Painlevé V

We first consider solutions of system (28) that are invariant under the action of the symmetry
generator

w1 + 2μw5 = ∂α + ∂β + 2μ
(
u∂u − u1∂u1 − u2∂u2

)
, μ ∈ R − {0}, (31)

where μ may depend on n,m. Such solutions have to satisfy the differential equations

u,α + u,β = 2μu, u1,α + u1,β = −2μu1, u2,α + u2,β = −2μu2.

This implies that u, u1 and u2 are given by

u(α, β) = Tn,m(y) exp(μz),

u1(α, β) = Tn+1,m(y) exp(−μz), (32)

u2(α, β) = Tn,m+1(y) exp(−μz),

where

y = α − β, z = α + β,

and Ti,j (y) are arbitrary functions.
Substitution of these forms into (28) yields the following system of ordinary differential

equations:

y{T ′
n+1,m(y) + μTn+1,m(y)} = −(m + A −B)B,

y{T ′
n,m+1(y) − μTn,m+1(y)} = (n + A +B)B, (33)

yT ′′
n,m(y) − (n + m)T ′

n,m(y) = 2A +A −B − (n − m − μy)μTn,m(y),

where

A ± := T ′
n,m(y) ± μTn,m(y), B := Tn+1,m(y) − Tn,m+1(y),

and the prime denotes differentiation with respect to y. The analysis of the latter system can
be summarized as follows.

13
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Starting from (33) and using differentiation and elimination, one arrives at a fourth-order
ordinary differential equation for Tn,m(y), which is omitted because of its length. The order
of the latter differential equation is reduced by 1, using the quadrature

d

dy
ln(Tn,m(y)) = μ

1 + Gn,m(y)

1 − Gn,m(y)
. (34i)

Finally, the resulting third-order equation can be integrated once to yield

PV

(
y,Gn,m(y); n2

2
,−m2

2
, λ,−2μ2

)
, (34ii)

where λ is a constant of integration and may depend on the parameters n,m.
Returning to system (33) and using relations (34), one finds the following expressions for

the functions Tn+1,m(y), Tn,m+1(y):

Tn+1,m(y) = yG′
n,m(y) + nG2

n,m(y) − (2n + 1 + κ − 2μy) Gn,m(y) + n + κ + 1

4μ(1 − Gn,m(y))Tn,m(y)
, (35i)

Tn,m+1(y) = yG′
n,m(y) − (m + κ + 1)G2

n,m(y) + (2m + 1 + κ + 2μy)Gn,m(y) − m

4μ(1 − Gn,m(y))Gn,m(y)Tn,m(y)
, (35ii)

where κ = λ/(2μ).
In order to satisfy the discrete potential KdV equation, the functions u, u1 and u2, given

by (32), (34) and (35), respectively, must be related by shifting appropriately n and m, i.e.

u1 = Sn(u), u2 = Sm(u).

The above conditions imply that parameter μ must have the form

μ = (−1)n+mτ, τ ∈ R,

and functions Ti,j (y) have to satisfy the following relations:

Tn+1,m(y) = Sn(Tn,m(y)), Tn,m+1(y) = Sm(Tn,m(y)).

The combination of these conditions with equations (34) and (35) leads to the following
restriction on parameter λ. It must be of the form

λ = ρ − (−1)n+mτ, ρ ∈ R.

Recapitulating, we can state that the discrete potential KdV equation admits continuously
invariant solutions of the form

u(0,0) = Tn,m(α − β) exp[(−1)n+mτ × (α + β)], τ ∈ R, (36i)

where Tn,m(y) is given by the quadrature

d

dy
ln(Tn,m(y)) = (−1)n+mτ

1 + Gn,m(y)

1 − Gn,m(y)
, (36ii)

with Gn,m(y) being a solution of the Painlevé equation

PV

(
y,Gn,m(y); n2

2
,−m2

2
, ρ − (−1)n+mτ,−2τ 2

)
, ρ ∈ R. (36iii)

Remark 4.1. The solutions of the discrete potential KdV equation just constructed can
also be considered as being derived from what is referred to as the asymmetric, alternate

14
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discrete Painlevé II equation. This observation results from the following considerations. By
construction, any solution u of the class derived above satisfies the differential equation

∂αu(0,0) + ∂βu(0,0) = 2τ(−1)n+mu(0,0) (37)

as well as the invariant surface conditions (21ii) and (21iii), i.e.

∂αu(0,0) +
n

u(1,0) − u(−1,0)

= 0, ∂βu(0,0) +
m

u(0,1) − u(0,−1)

= 0. (38)

Elimination of the derivatives of u(0,0) from (37) and (38) leads to
n

u(1,0) − u(−1,0)

+
m

u(0,1) − u(0,−1)

+ 2τ(−1)n+mu(0,0) = 0. (39)

This, however, is the invariant surface condition for solutions of the discrete potential KdV
that remain invariant under the action of the symmetry generator v2 + v4 + 2τx3. As shown
in [13], this class of group-invariant solutions is determined by solutions of the asymmetric,
alternate discrete Painlevé II.

4.2. Solutions related to Painlevé VI

The solutions of system (28) which remain invariant under the action of the symmetry generator

w2 + (2μ − 1)w5 = α∂α + β∂β + 2μu∂u + (1 − 2μ)
(
u1∂u1 + u2∂u2

)
, μ ∈ R − {0}, (40)

where μ may depend on n and m, must satisfy the differential equations

αu,α + βu,β = 2μu,

αu1,α + βu1,β = (1 − 2μ)u1,

αu2,α + βu2,β = (1 − 2μ)u2.

Hence, these invariant solutions must have the form

u(α, β) = Sn,m(y)zμ,

u1(α, β) = Sn+1,m(y)z1/2−μ, (41)

u2(α, β) = Sn,m+1(y)z1/2−μ,

where

y = α

β
, z = αβ.

Substitution of the above expressions into system (28) leads to the system of ordinary
differential equations:

(1 − y) {2yS ′
n+1,m(y) + (2μ − 1)Sn+1,m(y)} = 2{m +

√
yA −B}B,

(y − 1) {2yS ′
n,m+1(y) − (2μ − 1)Sn,m+1(y)} = 2{ny +

√
yA +B}B,

(y − 1) {y2S ′′
n,m(y) + yS ′

n,m(y) − μ2Sn,m(y)} = 2
√

yA +A −B + mA + + nyA −,

where

A ± := yS ′
n,m(y) ± μSn,m(y), B := Sn+1,m(y) − Sn,m+1(y),

and the prime denotes differentiation with respect to y. The analysis of the latter system is
similar to that described in the previous subsection regarding system (33) and leads to the
following results.

The function Sn,m(y) is determined by

d

dy
ln(Sn,m(y)) = μ

y

y + Hn,m(y)

y − Hn,m(y)
, (42i)
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where the function Hn,m(y) is a solution of the equation

PVI

(
y,Hn,m(y); n2

2
,−m2

2
, λ,

1 − 4μ2

2

)
. (42ii)

In the latter, λ stands for a constant of integration which may depend on the parameters n
and m.

The functions Sn+1,m(y) and Sn,m+1(y) are given by

Sn+1,m(y) = y2(y − 1)2H ′2
n,m + 2(2μ − 1)y(y − 1)Hn,m(Hn,m − 1)H ′

n,m + AiH
i
n,m

8μ(2μ − 1)y1/2(Hn,m − y)(Hn,m − 1)Hn,mSn,m

, (43i)

Sn,m+1(y) = y2(y − 1)2H ′2
n,m + 2(2μ − 1)y2(y − 1)(Hn,m − 1)H ′

n,m + BiH
i
n,m

8μ(2μ − 1)y1/2(Hn,m − y)(Hn,m − 1)Hn,mSn,m

, (43ii)

where we have omitted the argument y of Hn,m and Sn,m. In these relations, summation over
the repeated index i = 0, . . . , 4 is understood and the coefficients Ai = Ai(y, n,m) and
Bi = Bi(y, n,m) are given by

A0(y, n,m) := −m2y2,

A1(y, n,m) := y[(m2 − 2λ + (n − 2μ + 1)2)y + 2m2],

A2(y, n,m) := −(n − 2μ + 1)2y2 − 2(m2 − 2λ + (n − 2μ + 1)2)y + (1 − 2μ)2 − m2,

A3(y, n,m) := 2(n − 2μ + 1)2y + m2 + 2n2 − 2λ − (n + 2μ − 1)2,

A4(y, n,m) := −n(n − 4μ + 2),

Bi(y, n,m) := y2A4−i (y
−1,m, n), i = 0, . . . , 4.

Remark 4.2. For later purposes, it is noted that the functions Sn+1,m(y) and Sn,m+1(y) may
also be considered as being determined by the Painlevé VI transcendent. Specifically, these
functions are determined through the quadratures

d

dy
ln(Sn+1,m(y)) = 1 − 2μ

2y

y + Hn+1,m(y)

y − Hn+1,m(y)
,

d

dy
ln(Sn,m+1(y)) = 1 − 2μ

2y

y + Hn,m+1(y)

y − Hn,m+1(y)
,

(44i)

where Hn+1,m(y) and Hn,m+1(y) satisfy the equations

PVI

(
y,Hn+1,m(y); (n + 1)2

2
,−m2

2
, λ, 2μ(1 − μ)

)
, (44ii)

and

PVI

(
y,Hn,m+1(y); n2

2
,− (m + 1)2

2
, λ, 2μ(1 − μ)

)
, (44iii)

respectively.
This can be proven in the following fashion. Combining relations (43) and (44i), we

express Hn+1,m(y),Hn,m+1(y) in terms of Sn,m(y),Gn,m(y) and their derivatives. Substituting
the resulting expressions into equations (44ii) and (44iii), we arrive at (42ii).

In order to satisfy equation H1, the functions u, u1 and u2, determined by (41), (42) and
(43), respectively, must be such that u1 and u2 result from u by applying the shift operators on
u, i.e.

u1 = Sn(u), u2 = Sm(u).
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These conditions imply that parameter μ must have the form

μ = 1
4 (1 + 2(−1)n+mτ), τ ∈ R,

and functions Si,j (y) must satisfy the following relations:

Sn+1,m(y) = Sn(Sn,m(y)), Sn,m+1(y) = Sm(Sn,m(y)).

It is easily verified that the only consequence of the last conditions is that the parameter λ

is independent of n,m. Hence, we conclude that H1 admits continuously invariant solutions
of the form

u(0,0) = Sn,m

(
α

β

)
(αβ)(1+2(−1)n+mτ)/4 , τ ∈ R, (45i)

where the function Sn,m(y) is determined by the quadrature

d

dy
ln(Sn,m(y)) = 1 + 2(−1)n+mτ

4y

y + Hn,m(y)

y − Hn,m(y)
, (45ii)

with Hn,m(y) being a solution of

PVI

(
y,Hn,m(y); n2

2
,−m2

2
, λ,

1

2
− 1

8
(1 + 2(−1)n+mτ)2

)
, λ ∈ R. (45iii)

Remark 4.3. Function u, defined in (45), satisfies the invariant surface conditions (38) and,
by construction, the differential equation

α∂αu(0,0) + β∂βu(0,0) = (
1
2 + (−1)n+mτ

)
u(0,0). (46)

Elimination of the derivatives of u(0,0) involved in (38) and (46) leads to

αn

u(1,0) − u(−1,0)

+
βm

u(0,1) − u(0,−1)

+

(
1

2
+ (−1)n+mτ

)
u(0,0) = 0.

The last equation implies that solution (45) is also invariant under the action of the generalized
symmetry generator αv2 + βv4 + τx3.

Reductions of H1 using the above symmetry generator were studied in [13], while the
connection of the corresponding similarity solutions to discrete generalized and continuous
sixth Painlevé equations was demonstrated in [18]. On the other hand, similarity solutions
corresponding to the symmetry generated by αv2 + βv4 were studied in [22]. The latter are
contained in the class of solutions given by (45) for τ = 0.

5. Continuous-invariant solutions of the discrete Schwarzian KdV equation

The Q1δ=0 ABS equation, which is also referred to as discrete Schwarzian KdV [21], is given
by

α(v(0,0) − v(0,1))(v(1,0) − v(1,1)) − β(v(0,0) − v(1,0))(v(0,1) − v(1,1)) = 0. (47)

In this section, we present continuously invariant solutions of the above equation using
similarity solutions of the corresponding system �[v].

For this reason, we first write out �[v] explicitly and list the algebra of its Lie point
symmetries. Specifically, �[v] is made up of the equations

∂v1

∂β
= v1 − v2

α − β

m(v − v1)(v − v2) − β(v1 − v2)
∂v
∂β

(v − v2)2
, (48i)
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∂v2

∂α
= v1 − v2

α − β

n(v − v1)(v − v2) + α(v1 − v2)
∂v
∂α

(v − v1)2
, (48ii)

∂2v

∂α∂β
= 1

α − β

(
2

(
α

v − v1
− β

v − v2

)
∂v

∂α

∂v

∂β
+ n

∂v

∂β
− m

∂v

∂α

)
, (48iii)

where

v = v(0,0), v1 = v(1,0), v2 = v(0,1).

Its algebra of Lie point symmetries is three dimensional and is spanned by the vector fields

z1 = α∂α + β∂β, z2 = ∂v + ∂v1 + ∂v2 , z3 = v∂v + v1∂v1 + v2∂v2 .

The solutions of system (48) remaining invariant under the action of the symmetry
generator z1 + 2γ z3 are determined by the Painlevé sixth transcendent. To derive this result,
we will make use of the following lemma, whose proof is straightforward.

Lemma 5.1. The contact transformation,

∂v

∂α
= u1 − v

α

(
n + (u1 − v)

∂u

∂α

)
, (49i)

∂v

∂β
= u2 − v

β

(
m + (u2 − v)

∂u

∂β

)
, (49ii)

v1 = u1, v2 = u2, (49iii)

maps solutions of system (28) to solutions of system (48) and conversely.

Thus, we start with the similarity solution of system (28) specified by (41)–(43), in which
we set λ = 2�2, for later convenience. Substitution of this solution to (49) and integration of
the result leads to the following solution of �[v]:

v(α, β) = Pn,m(y)z−μ+1/2,

v1(α, β) = Pn+1,m(y)z−μ+1/2, (50)

v2(α, β) = Pn,m+1(y)z−μ+1/2,

where y = α/β, z = αβ and

Pn,m(y) = (m + n − 2(� + μ) + 1)(Hn,m(y) − y)

4μ
√

y(Hn,m(y) − 1)Sn,m(y)
− Sn+1,m(y) − Hn,m(y)Sn,m+1(y)

Hn,m(y) − 1
, (51i)

Pn+1,m(y) = Sn+1,m(y), (51ii)

Pn,m+1(y) = Sn,m+1(y). (51iii)

The functions Pi,j (y) are determined by solutions of the sixth Painlevé equation.
Regarding Pn+1,m(y) and Pn,m+1(y), this property is an obvious consequence of
equations (51).

On the other hand, Pn,m(y) is determined by the solution H̃n,m(y) of the Painlevé VI
equation. More specifically, the former is determined by the latter through the quadrature

d

dy
ln(Pn,m(y)) = 1 − 2μ

2y

y − H̃n,m(y)

y + H̃n,m(y)
, (52i)
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where H̃n,m(y) stands for any solution of the Painlevé equation

PVI

(
y, H̃n,m(y); n2

2
,−m2

2
,
(2� − 1)2

2
, 2μ(1 − μ)

)
. (52ii)

The proof is similar to that described in remark 4.2.
So far, we have shown that the triad of functions

v(α, β) = Pn,m(y)zγ ,

v1(α, β) = Pn+1,m(y)zγ ,

v2(α, β) = Pn,m+1(y)zγ ,

where

γ = −μ + 1
2 ,

and Pi,j ’s are determined by solutions of the Painlevé VI equation, provides a solution of
system (48). Obviously, all members of this triad are also invariant under the symmetry
generator z1 + 2γ z3, i.e. they satisfy the differential equations

αv,α + βv,β = 2γ v, αv1,α + βv1,β = 2γ v1, αv2,α + βv2,β = 2γ v2,

respectively.
The functions v, v1 and v2, as defined above, form a solution of the discrete Schwarzian

KdV equation provided that

v1 = Sn(v), v2 = Sm(v).

These conditions imply that parameter γ is independent of n,m, and parameter � must have
the form

� = 1
2 (c + n + m + 1), c ∈ R,

in view of which, functions Pi,j (y) satisfy the following relations:

Pn+1,m(y) = Sn(Pn,m(y)), Pn,m+1(y) = Sm(Pn,m(y)).

As a result, the continuously invariant solutions of Q1δ=0 constructed above can be written
as

v(0,0) = Pn,m

(
α

β

)
(αβ)γ , γ ∈ R, (53i)

where

d

dy
ln(Pn,m(y)) = γ

y

y + H̃n,m(y)

y − H̃n,m(y)
, (53ii)

and H̃n,m(y) satisfies the continuous Painlevé VI equation:

PVI

(
y, H̃n,m(y); n2

2
,−m2

2
,

1

2
(n + m + c)2,

1 − 4γ 2

2

)
, c ∈ R. (53iii)

Remark 5.1. The continuously invariant solution (53) also satisfies the differential-difference
equations:

α
∂v(0,0)

∂α
= n

(v(1,0) − v(0,0))(v(0,0) − v(−1,0))

v(1,0) − v(−1,0)

, (54i)

β
∂v(0,0)

∂β
= m

(v(0,1) − v(0,0))(v(0,0) − v(0,−1))

v(0,1) − v(0,−1)

. (54ii)
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The latter are but the invariant surface conditions (21ii) and (21iii). On the other hand, the
function v(0,0) also satisfies the differential equation

α∂αv(0,0) + β∂βv(0,0) = 2γ v(0,0), (55)

since it is invariant under the symmetry generator z1 + 2γ z3. Using equations (54) to replace
the derivatives of v(0,0) appearing in the last equation, we conclude that every continuously
invariant solution must satisfy the following constraint:

n
(v(1,0) − v(0,0))(v(0,0) − v(−1,0))

v(1,0) − v(−1,0)

+ m
(v(0,1) − v(0,0))(v(0,0) − v(0,−1))

v(0,1) − v(0,−1)

= 2γ v(0,0).

Reductions of the Schwarzian KdV equation constructed on the basis of this constraint were
presented in [18].

6. Continuous-invariant solutions and generating equations

The notion of generating partial differential equations was introduced by Nijhoff, Joshi and
Hone in [19], where their archetypical example, the RPDE, was also presented. In the present
section, we show that system �[u] corresponding to several members of the ABS class is
intimately related to the above kind of equations. Our method of deriving this relation enables
us to produce the results of [19] in a more systematic way, as well as to extend these results
to other integrable lattice equations. In particular, we show that equations H1–H3 and Q1 are
related to the RPDE.

Remark 6.1. In order to simplify the resulting expressions, in the present section, we adopt
the following notation for the corresponding u(i,j):

u = u(0,0), u1 = u(1,0), u2 = u(0,1).

6.1. The system �[u] of H1, H2 and Q1

Let S(U, u1, u2; δ) denote the following system of partial differential equations:

∂u1

∂β
= u1 − u2

α − β

(
m − (u1 − u2)

∂U

∂β

)
+ (α − β)δ2 ∂U

∂β
, (56i)

∂u2

∂α
= u1 − u2

α − β

(
n + (u1 − u2)

∂U

∂α

)
− (α − β)δ2 ∂U

∂α
, (56ii)

∂2U

∂α∂β
= 1

α − β

(
2(u1 − u2)

∂U

∂α

∂U

∂β
+ n

∂U

∂β
− m

∂U

∂α

)
. (56iii)

One arrives at the above system starting from �[u] corresponding to equations H1, H2 and
Q1 through the following contact transformation:

M (u,U) :=

⎧⎪⎪⎨
⎪⎪⎩

u,α = 2f (u, u1, α)U,α + nf,u1(u, u1, α)

2r(α)

u,β = 2f (u, u2, β)U,β + mf,u2(u, u2, β)

2r(β)
.

(57)

In particular, M (u,U) maps

(1) �[u] of H1 to S[u; 0],
(2) �[u] of H2 to S[U ; δ] with δ2 = 1, and
(3) �[u] of Q1 to S[U ; δ].

20



J. Phys. A: Math. Theor. 42 (2009) 165203 D Tsoubelis and P Xenitidis

In view of these observations, system S[U ; δ] introduced above incorporates the
continuously invariant solutions of the three integrable lattice equations H1, H2 and Q1.
What is remarkable is the fact that S[U ; δ] is also related to the RPDE, which has been shown
to be a generating equation for the KdV hierarchy [19].

Indeed, S[U ; δ] can be decoupled leading to a fourth-order partial differential equation
for each of the functions involved. To see this, we first solve equation (56iii) for the difference
u1 − u2 to find

u1 − u2 = 1

2

(
(α − β)

U,αβ

U,αU,β

+
m

U,β

− n

U,α

)
. (58)

Substituting the above expression into (56i) and (56ii), we obtain ∂βu1 and ∂αu2 in terms of U
and its derivatives. Then, we differentiate equation (58) with respect to α and use (56ii) and
(58) to eliminate ∂αu2 and u1 − u2, respectively. This gives ∂αu1 in terms of the derivatives of
U. The compatibility between the resulting expression and the first equation of S[U ; δ] leads
to the following fourth-order partial differential equation:

R(α, β,U ; n,m) + 2δ2 ∂U

∂α

∂U

∂β

(
2

∂2U

∂α∂β
− 1

α − β

(
∂U

∂α
− ∂U

∂β

))
= 0, (59)

where

R(α, β,U ; n,m) := −U,ααββ + U,ααβ

(
1

α − β
+

U,ββ

U,β

+
U,αβ

U,α

)

+ U,αββ

(
1

β − α
+

U,αα

U,α

+
U,αβ

U,β

)
− U,ααU,ββ

U,αβ

U,αU,β

+ U,αα

(
n2

(α − β)2

U 2
,β

U 2
,α

− 1

α − β

U,αβ

U,α

− U 2
,αβ

U 2
,α

)

+ U,ββ

(
m2

(α − β)2

U 2
,α

U 2
,β

+
1

α − β

U,αβ

U,β

− U 2
,αβ

U 2
,β

)

+
n2

2(α − β)3

U,β

U,α

(U,α + U,β + 2(β − α)U,αβ)

− m2

2(α − β)3

U,α

U,β

(U,α + U,β + 2(α − β)U,αβ) +
1

2(α − β)
U 2

,αβ

(
1

U,α

− 1

U,β

)
.

When δ = 0, the last equation reduces to R(α, β,U ; n,m) = 0, and this is exactly the
equation named the RPDE [19, 23]. In fact, even when δ �= 0, equation (59) is essentially the
same to the RPDE. Specifically, one only needs to set

Ũ = 1

2δ
exp(2δU),

in order to transform equation (59) to R(α, β, Ũ ; n,m) = 0. For this reason, equation (59)
will be referred to as the RPDE for all values of parameter δ.

The function U may also be considered as a potential for u1 and u2. To see this, we just
have to solve S[U ; δ] for the derivatives of U. The compatibility of the resulting equations
leads to the following system for u1, u2:

u1,αβ = 2(u1 − u2)

(u1 − u2)2 − δ2(α − β)2
(u1,αu1,β + 2δ2(n + 1)m)

−
(

2δ2(α − β)

(u1 − u2)2 − δ2(α − β)2
+

1

α − β

)
(mu1,α + (n + 1)u1,β), (60i)
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u2,αβ = 2(u2 − u1)

(u1 − u2)2 − δ2(α − β)2
(u2,αu2,β + 2δ2n(m + 1))

+

(
2δ2(α − β)

(u1 − u2)2 − δ2(α − β)2
+

1

α − β

)
((m + 1)u2,α + nu2,β). (60ii)

When δ = 0, the last equations decouple easily yielding the RPDE pair:

R(α, β, u1; n + 1,m) = 0, R(α, β, u2; n,m + 1) = 0.

In the case δ �= 0, system (60) may also be decoupled but the resulting equations are much
more complicated. Specifically, one may solve equation (60i) for u2 and substitute the result
into equation (60ii). This leads to a fourth-order, second-degree partial differential equation
for u1, which is omitted here because of its length. Analogous considerations hold for the
function u2.

Remark 6.2. System S[U ; 0] first appeared in [19]. A generalization of S[U ; 0] was derived
in [23, 24] in the context of a symmetry reduction of the anti-self-dual Yang–Mills equations.
The relation of the latter to the Ernst–Weyl equation and the Painlevé transcendents was also
presented in [24].

Remark 6.3. As already noted, S[U ; δ] is integrable. A Lax pair for this system is given by

�,α = 1

α − λ

(
n + u1U,α −U,α

u1(n + u1U,α) −u1U,α

)
� −

(
0 0

δ2(α − λ)U,α 0

)
�, (61i)

�,β = 1

β − λ

(
m + u2U,β −U,β

u2(m + u2U,β) −u2U,β

)
� −

(
0 0

δ2(β − λ)U,β 0

)
�. (61ii)

It can be obtained from the Lax pair (26) using the transformation M and performing the
gauge transformation

� = (α − λ)−n/2(β − λ)−m/2�.

Remark 6.4. It is worth mentioning that equation (59) is the Euler–Lagrange equations:

∂2

∂α∂β

(
∂L

∂U,αβ

)
− ∂

∂α

(
∂L

∂U,α

)
− ∂

∂β

(
∂L

∂U,β

)
= 0

corresponding to the Lagrangian

L = α − β

2

U 2
,αβ

U,αU,β

+
1

2(α − β)

(
m2 U,α

U,β

+ n2 U,β

U,α

)
+ 2δ2(α − β)U,αU,β.

For δ = 0, this reduces to the Lagrangian for the RPDE given in [19].

6.2. The system �[u] of H3

The continuously invariant solutions of H3 are also related to solutions of the RPDE. We
establish this connection for the cases δ = 0 and δ �= 0 separately. In each case, we
introduce a potential function through a system of equations and use the latter to simplify the
corresponding system �[u]. The resulting system can be decoupled leading to the RPDE for
the potential function.
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6.2.1. Case I: δ = 0. Let us first introduce a potential ψ for system �[u] corresponding to
H3δ=0. This is determined by the relations

ψ,α = eU(n − αU,α)

2u1
, ψ,β = eU(m − βU,β)

2u2
, (62)

where

exp(−U(α, β)) = u(α, β).

We solve the above equations for u1, u2 and substitute the resulting expressions into the
first two equations of �[u]. Then, we perform the change of the independent variables

(α, β) −→ (α2, β2)

and arrive at the following system for U and ψ :

U,αβ = 1

4(α − β)

(
4α2U 2

,α − n2

α

ψ,β

ψ,α

− 4β2U 2
,β − m2

β

ψ,α

ψ,β

)
, (63i)

ψ,αβ = 2

α − β
(αU,αψ,β − βU,βψ,α). (63ii)

On the other hand, using the above substitutions for u, u1 and u2 and the change of the
independent variables, the third equation of �[u] is identically satisfied by taking into account
system (63).

The pair of equations (63) can be decoupled, and this leads to the following equation for
the potential ψ :

R(α, β,ψ; n,m) = 0.

The decoupling can be achieved by solving equation (63ii) for one of the first-order derivatives
of U, e.g. U,α , and taking the compatibility condition between the resulting equation and (63i).
The result is a relation for U,ββ . Finally, the compatibility condition between the latter and
(63i) implies that ψ satisfies the RPDE.

On the other hand, system (63) may be decoupled leading to a fourth-order, second-degree
partial differential equation for function U. First, we solve (63i) for ψ,α to get

ψ,α = ψ,βA, ψ,αβ = ψ,βB,

where

A = 2αβ(α − β)U,αβ + X

α(m2 − β2U 2
,β)

, B = 2(αU,α − βAU,β)

α − β

and

X =
√

αβ
(
4αβ(α − β)2U 2

,αβ +
(
m2 − β2U 2

,β

)(
n2 − α2U 2

,α

))
.

The compatibility condition ∂βψ,α = ψ,αβ implies

ψ,ββ = ψ,β

(
B − DβA

A

)
.

Finally, the compatibility condition ∂βψ,αβ = ∂αψ,ββ leads to

DαDβ ln A = Dα

(
B

A

)
− DβB.

If we write out the last equation explicitly, solve it for X and square the result, then we
end up with a fourth-order, second-degree (in the highest derivative U,ααββ ) partial differential
equation. It is the modified partial differential equation (MPDE) presented in [19].
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6.2.2. Case II: δ �= 0. In this case, we introduce the potential φ by the relations

φ,α = u1(nu + αu,α)

α(uu1 + δα)
, φ,β = u2(mu + βu,β)

β(uu2 + δβ)
,

in view of which u1, u2 may be expressed in terms of u, φ and their derivatives:

u1 = δα2φ,α

αu,α + u(n − αφ,α)
, u2 = δβ2φ,β

βu,β + u(m − βφ,β)
. (64)

We substitute the above relations into the first two equations of �[u] and set

u(α, β) := exp(−U(α, β) + δψ(α, β)),

φ(α, β) := −U(α, β) − δψ(α, β) + n ln α + m ln β.
(65)

Finally, the change of the independent variables

(α, β) −→ (α2, β2) (66)

leads to the following system:

U,αβ = 1

4(α − β)

(
4α2U 2

,α − n2

α

ψ,β

ψ,α

− 4β2U 2
,β − m2

β

ψ,α

ψ,β

)
+ δ2ψ,αψ,β, (67i)

ψ,αβ = 2

α − β
(αU,αψ,β − βU,βψ,α). (67ii)

Moreover, the third equation of �[u] is satisfied identically, in view of transformations (64)–
(66) and by taking into account system (67).

We may decouple system (67) following the procedure described in the previous
subsection. In this fashion, we conclude that ψ satisfies the RPDE, as well.

Remark 6.5. A Lax pair for system (67) is given by

�,α = 1

α − λ2

(
αU,α + λ2δψ,α 2λψ,α

λ
8αψ,α

(n2 − 4α2(U,α + δψ,α)2) −αU,α − λ2δψ,α

)
�,

�,β = 1

β − λ2

(
βU,β + λ2δψ,β 2λψ,β

λ
8βψ,β

(m2 − 4β2(U,β + δψ,β)2) −βU,β − λ2δψ,β

)
�.

(68)

The above equations follow from (26) by making the transformations (64)–(66) and,
subsequently, performing the gauge transformation:

� =
(

exp
(

δψ−U

2

)
0

0 exp
(

U−δψ

2

)
)

�.

6.3. Connection with previous results

The preceding analysis shows that the integrable lattice equations H1–H3 and Q1 are closely
related, i.e. their continuously invariant solutions may be expressed in terms of solutions of
the RPDE.

The relation among H1, H3δ=0 and Q1δ=0 and the RPDE was presented by Nijhoff, Hone
and Joshi in [19], starting from a different point of view. Specifically, the authors presented
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systems of differential–difference equations compatible with the above lattice equations,
which, from our point of view, are the invariant surface conditions (21ii) and (21iii). Using the
differential–difference equations, they constructed compatible systems of partial differential
equations, which in turn lead to the RPDE and MPDE. Actually, the systems appearing in the
analysis of Nijhoff, Hone and Joshi do not differ from what we called �[u].

To clarify this correspondence further, let us point out the following.

(i) The system presented in [19] in relation with H1 is actually S(u,−u1,−u2; 0).
(ii) In relation with Q1δ=0, the authors of [19] presented a system of differential equations

�, which can be decoupled leading to a fourth-order partial differential equation,
called Schwarzian partial differential equations (SPDEs). Here, we have presented the
corresponding system �[u], i.e. system (48), which may be decoupled for each involved
function leading to the RPDE.

However, system � and the resulting SPDE are related to (48) and the RPDE,
respectively. Indeed, starting from system (48), we make the change of the dependent
variables

u1 = u +
2αu,α

n(1 − ũ1)
, u2 = u +

2βu,β

m(1 − ũ2)
,

and, consequently, the change of the independent variables

(α, β) −→
(

1

α
,

1

β

)
.

This procedure leads to system �. Moreover, the RPDE is mapped to the SPDE using
the above transformation of the independent variables α, β.

(iii) Finally, the authors of [19] also presented the MPDE in relation with H3δ=0 and a Miura
transformation relating the MPDE to the RPDE. From our point of view, this Miura
transformation is system (63), which is equivalent to �[u] corresponding to H3δ=0.

7. Conclusions and perspectives

We have presented symmetry reductions of the Adler, Bobenko and Suris equations using
both of the extended three-point generalized symmetries admitted by them. Such reductions
lead to special similarity solutions, which we named continuously invariant solutions. It was
proven that these are determined by a system of partial differential equations, �[u], which is
integrable in the sense that it admits an auto-Bäcklund transformation and a Lax pair.

The symmetry analysis and the corresponding reductions of system �[u] associated
with the discrete potential and Schwarzian KdV equations led to new interesting results. In
particular, it was shown that the continuously invariant solutions of H1 are determined by
solutions of the continuous Painlevé V and VI equations. Similar results and considerations
were also presented with regard to equation Q1δ=0.

We were also able to reveal the connection of �[u] to generating equations. In particular,
we derived the generating equations to the H1–H3 and Q1 members of the ABS family. In
addition, we showed that the continuously invariant solutions of H1, H3δ=0 and Q1δ=0 are
related to the RPDE, in accordance with the results of Nijhoff, Hone and Joshi in [19].

The construction of continuously invariant solutions of the other members of the ABS
family and, especially, of the master equation Q4 is one of the interesting directions in which
the present work can be extended. In addition, more general lattice systems possessing the
consistency property can also be analyzed in the framework of continuously invariant solutions
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and generating equations. The discrete Boussinesq equation [25] and the discrete modified
Boussinesq equation [26] are among the better known systems which can be brought into the
above framework.
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Appendix A. The characteristic polynomials of the ABS equations

H1: f (u, x, α) = 1 k(α, β) = β − α G(x, y) = (x − y)2

H2: f (u, x, α) = 2(u + x + α) k(α, β) = β − α G(x, y) = (x − y)2 − (α − β)2

H3: f (u, x, α) = ux + αδ k(α, β) = α2 − β2 G(x, y) = (yα − xβ)(yβ − xα)

Q1: f (u, x, α) = ((u − x)2 − α2δ2)/α, k(α, β) = −αβ(α − β)

G(x, y) = αβ((x − y)2 − (α − β)2δ2)

Q2: f (u, x, α) = ((u − x)2 − 2α2(u + x) + α4)/α, k(α, β) = −αβ(α − β)

G(x, y) = αβ((x − y)2 − 2(α − β)2(x + y) + (α − β)4)

Q3: f (u, x, α) = 1

4α(α2 − 1)
(4α(αu − x)(αx − u) − (α2 − 1)2δ2)

k(α, β) = (α2 − β2)(α2 − 1)(β2 − 1)

G(x, y) = (α2 − 1)(β2 − 1)

4αβ
(4αβ(αy − βx)(βy − αx) + (α2 − β2)δ2)

Q4: f (u, x, α) = ((ux + α(u + x) + g2/4)2 − (u + x + α)(4αux − g3))/a

k(α, β) = ab(a2b + ab2 + [12αβ2 − g2(α + 2β) − 3g3]a + [12βα2 − g2(β + 2α) − 3g3]b)

4(α − β)

G(x, y) = (a0xy + a1(x + y) + a2)(a2xy + a3(x + y) + a4)

− (a1xy + ā2y + ã2x + a3)(a1xy + ā2x + ã2y + a3)

Appendix B. Proof of proposition 3.2

Let u be a continuously invariant solution of the integrable lattice equation

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0 (B.1)

and ũ be constructed in terms of u via the auto-Bäcklund transformation Bd(u, ũ, λ). The
function ũ is another continuously invariant solution of equation (B.1), provided that it satisfies
the system

Q(ũ(0,0), ũ(1,0), ũ(0,1), ũ(1,1);α, β) = 0, (B.2i)

r(α)
∂ũ(0,0)

∂α
+ nR(ũ(0,0), ũ(1,0), ũ(−1,0), α) = 0, (B.2ii)

r(β)
∂ũ(0,0)

∂β
+ mR(ũ(0,0), ũ(0,1), ũ(0,−1), β) = 0. (B.2iii)

Obviously, the first equation holds, since ũ is constructed using Bd(u, ũ, λ). It remains to
show that equations (B.2ii) and (B.2iii) also hold.
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To prove that (B.2ii) holds, we differentiate the first equation of Bd(u, ũ, λ) with respect
to α. Then, we use equation (21ii) and its shift in the n direction to substitute ∂αu(0,0) and
∂αu(1,0), respectively. Moreover, we use the determining equation for the generator ṽ1 to
substitute the derivative of Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) with respect to α. In terms of
the above substitutions, we come up with the following equation:

(
Q,ũ(0,0)

+ Q,ũ(1,0)
Sn

) (
r(α)

∂ũ(0,0)

∂α
+ nR(ũ(0,0), ũ(1,0), ũ(−1,0), α)

)
= 0,

where we have omitted the arguments of the function Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ).
Finally, we eliminate the value u(1,0) from the above equation and the latter becomes

(G(u(0,0), ũ(1,0)) + h(u(0,0), ũ(0,0))Sn)

(
r(α)

∂ũ(0,0)

∂α
+ nR(ũ(0,0), ũ(1,0), ũ(−1,0), α)

)
= 0.

This equation involves the values of the function ũ and the value u(0,0) through the
polynomials h,G. Thus, the corresponding coefficients of the various powers of u(0,0) must
be identically zero. The matrix of the resulting algebraic system has rank 2 [13], and the
system admits only the zero solution, i.e.

r(α)
∂ũ(0,0)

∂α
+ nR(ũ(0,0), ũ(1,0), ũ(−1,0), α) = 0. (B.3i)

In the same fashion, we differentiate the second equation of the auto-Bäcklund
transformation with respect to β and use equation (21iii) and the determining equation for the
symmetry generator ṽ2 to get that ũ also satisfies

r(β)
∂ũ(0,0)

∂β
+ mR(ũ(0,0), ũ(0,1), ũ(0,−1), β) = 0. (B.3ii)

Thus, function ũ satisfies system (B.2), i.e. it is another continuously invariant solution.

Appendix C. Proof of proposition 3.3

Proposition 3.2 implies that if u is a continuously invariant solution, then function ũ, determined
by Bd(u, ũ, λ), will be another solution of the same kind, and conversely. In other words,
the functions u and ũ satisfy systems (21) and (B.2), respectively. Thus, we can express the
derivatives of ũ(0,0) in terms of the values and the corresponding derivatives of the function u
and conversely.

To achieve this, we solve

Q(u(−1,0), u(0,0), ũ(−1,0), ũ(0,0);α, λ) = 0 (C.1)

for u(−1,0) and (B.2ii) for ũ(−1,0). In terms of the above substitutions, the fraction
1/(u(1,0) − u(−1,0)) becomes(

r(α)

n
∂αũ(0,0) − f,ũ(1,0)

(ũ(0,0), ũ(1,0), α)

2

)
Q,u(1,0)

Q,ũ(1,0)
f (ũ(0,0), ũ(1,0), α)

+
Q,u(1,0)ũ(1,0)

Q,ũ(1,0)

,

where we have omitted the arguments of Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ).
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The derivatives of Q involved in the above expression are determined by the relations

Q,u(1,0)

Q,ũ(1,0)

= k(α, λ)f (ũ(0,0), ũ(1,0), α)

G(u(1,0), ũ(0,0), α, λ)
,

Q,u(1,0)ũ(1,0)

Q,ũ(1,0)

= 1

2

(
k(α, λ)f,ũ(1,0)

(ũ(0,0), ũ(1,0), α)

G(u(1,0), ũ(0,0), α, λ)
+

G,u(1,0)
(u(1,0), ũ(0,0), α, λ)

G(u(1,0), ũ(0,0), α, λ)

)
,

which hold in view of the equation Q(u(0,0), u(1,0), ũ(0,0), ũ(1,0);α, λ) = 0.
We arrive at equation (25iii) by substituting the above expressions into (21ii) and solving

the resulting equation for ∂αũ(0,0).
Conversely, we solve (C.1) for ũ(−1,0) and (21ii) for u(−1,0). Then, we substitute the

resulting expressions into (B.2ii) and solve this equation for ∂αu(0,0). The final result is
identical to the equation obtained by interchanging u and ũ in (25iii).

Equation (25iv), i.e. the fourth equation of Bc(u, ũ, λ), can be derived in a similar manner
using equations Q(u(0,−1), u(0,0), ũ(0,−1), ũ(0,0);β, λ) = 0 and (B.2iii).

Since the class of continuously invariant solutions is closed under Bd and the initial
solution u satisfies �[u], the same holds for the function ũ, i.e. the latter satisfies �[ũ]. Thus,
Bc(u, ũ, λ) defines an auto-Bäcklund transformation of system �[u].
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